2 00 3 Immersed nano - sized Al dispersoids in an Al matrix ; effects on the structural and mechanical properties by Molecular Dynamics simulations

نویسندگان

  • H Chamati
  • M S Stoycheva
  • G A Evangelakis
چکیده

We used molecular dynamics simulations based on a potential model in analogy to the Tight Binding scheme in the Second Moment Approximation to simulate the effects of aluminum icosahedral grains (dispersoids) on the structure and the mechanical properties of an aluminum matrix. First we validated our model by calculating several thermodynamic properties referring to the bulk Al case and we found good agreement with available experimental and theoretical data. Afterwards, we simulated Al systems containing Al clusters of various sizes. We found that the structure of the Al matrix is affected by the presence of the dispersoids resulting in well ordered domains of different symmetries that were identified using suitable Voronoi analysis. In addition, we found that the increase of the grain size has negative effect on the mechanical properties of the nanocomposite as manifested by the lowering of the calculated bulk moduli. The obtained results are in line with available experimental data.

منابع مشابه

Ja n 20 04 Immersed nano - sized Al dispersoids in an Al matrix ; effects on the structural and mechanical properties by Molecular Dynamics simulations

We used molecular dynamics simulations based on a potential model in analogy to the Tight Binding scheme in the Second Moment Approximation to simulate the effects of aluminum icosahedral grains (dispersoids) on the structure and the mechanical properties of an aluminum matrix. First we validated our model by calculating several thermodynamic properties referring to the bulk Al case and we foun...

متن کامل

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

The Structural and Mechanical Properties of Al-2.5%wt. B4C Met-al Matrix Nano-composite Fabricated by the Mechanical Alloying

In this study, aluminum (Al) matrix reinforced with micro-particles (30 µm) and nano-particles (50 nm) boron carbide (B4C) were used to prepare Al-2.5%wt., B4C nano-composite and micro-composite, respectively, using mechanical alloying method. The mixed powders were mechanically milled at 5, 10, 15 and 20 hrs. The XRD results indicated that the crystallite sizes of both the micro-composite and ...

متن کامل

Temperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments

Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...

متن کامل

Production of Dispersed Ceramic Nano-Particles in Al Alloy Using Friction Stir Processing

In this research, surface composite layers containing nano sized TiB2, Al2O3-TiB2, ZrO2 and CNT particles have been fabricated on Aluminum alloy substrates by friction stir processing. The effects of different processing variables such as number of passes and strengthening particle distribution, hardness, and wear properties of surface nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003